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D E T E R M I N A T I O N  OF T H E  U L T I M A T E  STATES OF E L A S T O P L A S T I C  BODIES 

B. D. Annin ,  V. V. Alekhin,  and S. N. Korobe in ikov  UDC 539.214;539.375 

The equations of quasistatic deformation of elastoplastic bodies are considered in a geometrical 
linear formulation. After discretization of the equations with respect to spatial variables by 
the finite-element method, the problem of determining equilibrium configurations reduces to 
integration of a system of nonlinear ordinary differential equations. In the ultimate state of a 
body of an ideal elastoplastic material, the matrix of the system degenerates and the problem 
becomes singular. A regularization algorithm for determining solutions of the problems for the 
ultimate states of bodies is proposed. Numerical solutions of test problems of determining the 
ultimate loads and equilibrium configurations for ideal elastoplastic bodies confirm the reliability 
of the regularization algorithm proposed. 

I N T R O D U C T I O N  

In the solution of problems of quasistatic.deformation of ideal elastoplastic bodies [1, 2], ultimate states, 
i.e., equilibrium configurations in which the strains tend to infinity, occur for certain values of external forces. 
The corresponding load is called the ultimate load. Analytical solutions of some problems and determination 
of the corresponding ultimate, loads are given in [2]. 

The finite-element method (FEM) is a universal method for solving problems of elastoplastic deforma- 
tion for bodies of arbitrary geometry [3-5]. After discretization of the basic system of differential equations 
by the FEM, the equilibrium configurations of the body can be determined by step-by-step integration of 
a nonlinear system of ordinary differential equations (ODE). In the ultimate state of the body, the matrix 
of the system degenerates. In the standard procedures of step-by-step integration of an ODE system, the 
external load is used as a deformation parameter. To determine the equilibrium states in the neighborhood of 
the ultimate loads, it is necessary to use small increments in the load [6]. In this case, the iterative processes 
of refining the solution converge poorly or diverge. A more reliable algorithm for determining the equilibrium 
configurations of the body in the neighborhood of the ultimate loads is based on the introduction of external 
load into the number of unknowns and the use of arc length of the integral curve as the deformation parameter 
[7, 8]. 

In the present paper, the procedure proposed by Bathe and Dvorkin [8] is supplemented by regular- 
ization of the system of ODE. This procedure of determining the equilibrium configurations is implemented 
in the computer program PIONER [9]. Its efficiency is demonstrated by solving some test problems. 
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1. R E G U L A I : t I Z A T I O N  OF T H E  O N E - D I M E N S I O N A L  P R O B L E M  

We solve a model problem to show difficulties that  arise in problems of deformation of ideal elastoplastic 
bodies in the ul t imate states and consider the regularization algorithm tha t  is used below to solve two- and 
three-dimensional problems. 

We consider the uniaxial uniform deformation of a bar with cross-sectional area A stretched or com- 
pressed by axial force P (Fig. 1). The material of the bar is assumed to be elastoplastic with the bilinear 
stress-strain diagram shown in Fig. 2 (r and e are the axial stress and strain, respectively, a ~ > 0 is the initial 
value of the yield stress, tan a -- E > 0 is Young's modulus, and Et >1 0 is the tangent modulus). Using the 
theory of plastic flow with isotropic hardening, we write the constitutive relation for the bar material in the 
form 

= (1.1) 
where 

E, lal < ~ry or lal = (ry, ag ~< 0, (1.2) 

b--  Et,  [aI = ~y, a g > 0 .  

Here ay - 0m< a~<t{[cr(7-)], a ~ } is the current value of the yield stress, t is a monotonically increasing deformation 

parameter, whose initial value is t = 0, and the dot denotes differentiation with respect to t. 
We write the rate  equilibrium equation: 

& -- P / A .  (1.3) 

From (1.1) and (1.3), we obtain the nonlinear ODE 

= P ,  (1.4) 

subject to the initial condition 

s = 0  for t - - 0 .  (1.5) 

Here, we introduce the tangent coefficient of  stiffness (analog of a tangent stiffness matrix [3]) 
k(a,  ~) -- bA. 

Problem (1.4), (1.5) governs the deformation of an elastoplastic bar. Equat ion (1.4) is an analog of the system 
of equations obtained by FEM discretization of the differential equations governing the deformation of an 

elastoplastic body. 
The equilibrium configurations of the bar are determined by integrating Eq. (1.4). For the monotonic 

plastic deformation of the rod, the equilibrium configurations in the (z, (r) plane correspond to the uniaxial 

strain diagram shown in Fig. 2. 
The solvability of problem (1.4), (1.5) depends on the value of the tangent  modulus Et: 
- -  Et > 0 (strain hardening elastoplastic materiaO. Problem (1.4), (1.5) is regular for both elastic 

(k = E A )  and elastoplastic (k = EtA)  deformation. The solution of the problem is unique. The ultimate 

states do not occur; 
- -  Et = 0 (ideal elastoplastic mater ial .  Problem (1.4), (1.5) is regular for elastic deformation ( k = E A ) 

and is singular for elastoplastic deformation (k -- 0). In the latter case, for /5  ~ 0, solutions do not exist, and 
for /5  = 0, a solution exists and it is not unique. The ult imate state occurs for Plim -- a~ 
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For an elastoplastic bar of strain hardening material, problem (1.4), (1.5) can be solved assuming 
that  the force P is the deformation parameter (t5 = 1). For a bar of an ideal elastoplastic material, the 
force P cannot be used as the deformation parameter when deformation occurs in the inelastic region since 
problem (1.4), (1.5) has no solution fo r /5  = 1. Thus, within the framework of the s tandard formulation of 
the problem of deformation of an elastoplastic body of the form (1.4), (1.5) under a specified external force, 
the equilibrium configurations cannot be obtained in the ul t imate state. 

In the new formulation of problem (1.4), (1.5), it is assumed that the external force is unknown. W'e 
introduce the unknown parameter A such that  

P = ),P0, 

where P0 = const 7~ 0. We now have the two desired functions s and A. Equation (1.4) is rewritten in the 
form 

kg - AP0 = O. (1.6) 

Equation (1.6) is solved in conjunction with the control equation 

+ i 2 = 1, (1.7) 

for which the deformation parameter t is the arc length of the integral curve in the space (s, A) [7, 8]. Equations 
(1.6) and (1.7) are supplemented by the initial conditions 

s = A = 0  for t = 0 .  (1.8) 

In the ult imate state of the bar, system (1.6), (1.7) becomes 

i = 0, = + 1 .  (1.9) 

The plus and minus signs on the right side of the second equation correspond to tension and compression of 
the bar, respectively. The choice of the arc length as the deformation parameter implies that  in the ultimate 
state, the absolute value of the strain becomes the deformation parameter [see the second equality in (1.9)]. 
In contrast to problem (1.4), (1.5), which becomes singular in the ultimate state, problem (1.8), (1.9) is 
regular and solvable. The nonlinear equation (1.7) reduces to the second equation (1.9), which is linear since 
,~ = 0. The latter equality is the solvability condition for Eq. (1.6) with k = 0. Generally (in the solution of 
problems of large dimension), equations of the form (1.7) must be linearized and the replacement of a system 
of the form (1.4) by a system of the form (1.6) changes the structure of the matrix of the basic system of 

equations. 
We consider another regularization algorithm, which is more suitable for numerical methods. We solve 

system (1.6), (1.7) in two stages. In the first stage, we solve Eq. (1.6), which after introduction of the new 

variable 
x ---- #/i (I.i0) 

takes the form 

k x  = Po. (1.11) 

Equation (1.11) is similar to Eq. (1.4) and is singular too. We regularize this equation, replacing Et = 0 by 
E~ > 0 (E~ << E),  i.e., the ideal elastoplastic material of the bar is replaced by a strain-hardening material 
with a small (compared to Young's modulus) tangent modulus. For the new material, we introduce the 
notation k t --  brA, where b r is determined by replacing Et  by E~. Thus, instead of the singular equation 
(1.11), we consider the regularized equation 

k ' x  = Po. (1.12) 

In the second stage, we determine A from the control equation (1.7): 

i = =t= - - 1  (1.13) 

and g from (1.10): g = xA. The sign on the right side of (1.13) is chosen from the condition of greater 

smoothness of the integral curve in the (s, A) space. 
Since, the basic equation (1.11) is replaced by (1.12) as a result of regularization, the original problem 

should be solved using an iterative procedure to refine the solution. 
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2. R E G U L A R I Z A T I O N  OF A S Y S T E M  OF F I N I T E - E L E M E N T  E Q U A T I O N S  

The above regularization procedure for the one-dimensional problem forms the basis of a numerical 
algorithm for the deformation analysis of ideal elastoplastic bodies in the ultimate states. 

After FEM discretization in the spatial variables, the system of equations governing the quasistatic 
deformation of an elastoplastic body is written as [3-5] 

Kgr = / ~ .  (2.1) 

Here K is the symmetric tangent stiffness matrix, U is the vector of nodal displacements, R is the vector 
of external forces, and the remaining notation coincides with the one adopted in Sec. 1. System (2.1) is 
supplemented by the initial conditions 

U = U 0  for t = 0 .  (2.2) 

The constitutive relations used to calculate the matrix K have the form 

~u = Cuk~k~ (Cuk~ = Ck.~ = C~k~ = CU~k), (2.3) 

where cri/ and ekl are components of the stress and strain tensors, respectively, and Cijkt are components of 
the tensor of rank four of the constitutive relations; the indices run from 1 to 3, and summation is performed 
over repeated indices. For the theory of plastic flow with isotropic strain hardening, the components of the 
tensor of the constitutive relations are as fbllows [10]: 

! ! 

1 Cijkl  = 1 + E u (bikbjZ + 5i~bjk) + ~ 5ijbkt -- c 1 ~-~"+"2"dJ2J 

where { " O, f y < O  or f y  = O, ~Tijeij ~ O , 
c = (2.s) 

1, /~  = 0, d / u  > 0; 

o'~j -- o'ij -- ~ i j a k k / 3  are the components of stress tensor deviator, ~, is Poisson's ratio, fy = 3v/-~2 - ay is 
the von Mises yield function, and (f/j are the Kronecker symbols; the second invariant of the stress tensor 
deviator J2 and the current yield point cry are determined by the equations 

' ' max { ~ ,  a.~ J2 -- o ' i jo ' i j /2,  o'y = 0~r~t 

The function introduced in (2.4) has the form 

3 E 

For an ideal elastoplastie material (E t  = 0), the replacement 

d d j a ~ l  ' , O'ijO'kl (2.6) 
C l + u + 2 d J 2  ~ c 2J2 

must be made on the right side of (2.4). The constitutive relations (2.3), (2.4), and (2.6) generalize relations 
(1.1) and (1.2) for the uniaxial deformation of a bar. 

By virtue of (2.5), we have g ---- K(gr), and, hence, (2.1) and (2.2) constitute the Cauchy problem for 
the system of nonlinear ODE. 

We assume that the external-force vector depends only on the parameter A, which characterizes the 
intensity of the external forces: 

R = AR0. (2.7) 

Here the vector R0 characterizes the external-force distribution. With allowance for (2.7), system (2.1) 
becomes 

K U  = ARo. (2.8) 
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The ultimate load (the parameter A takes the value AIim) corresponds to the degenerate matrix K. The latter 
is possible only for an ideal elastoplastic body. The standard schemes of integration of the nonlinear problem 
(2.8), (2.2) fail in the neighborhood of the ultimate loads. 

We regularize the problem with the degenerate (or almost degenerate) matrix K according to the 
scheme considered in Sec. 1. The parameter A is assumed to be unknown. System (2.8) is supplemented by 
a new (control) equation that corresponds to the choice of the arc length of the integral curve in the (U, A) 
space as the parameter t: 

~2 + ~/-t~.~T = 1 (2.9) 

(the superscript "t" denotes transposition of the column vector). 
System (2.8), (2.9) is solved for (~-, i )  in two stages. First, an auxiliary system of algebraic equations 

is solved for the vector U 

KD" = R0 or K ' U  = R0, (2.10) 

then A and/)" are determined from the vector/_I by the formulas 

il,2 = + l / V / 1  + ~ t v ,  ~.Z = ~ri. (2.11) 

In the determination of ~ in (2.11), the sign is chosen from the condition of greater smoothness of the integral 
curve in the (U, A) space [11]. The matrix K' in (2.10) is obtained from the matrix K by replacement of the 
tangent modulus E~ = 0 by E~ > 0 (E~ << E), i.e., the ideal elastoplastic material is replaced by a material 
with small strain hardening. 

Problem (2.10), (2.1i), (2.2) (with allowance for A = 0 for t = 0) is solved by stepwise integration 
with iterative refinement of the solution by the Crisfield method, which is considered in detail in [8, 12]. It 
should be noted that in the iterative solution of problems of the deformation of ideal elastoplastic bodies, 
the internal-ibrce vector F [3] is calculated using the tangent modulus Et = 0. The modified value E~ > 0 is 
used only to regularize the problem when the trial vector D" is determined. 

3. N U M E R I C A L  I M P L E M E N T A T I O N  OF T H E  R E G U L A R I Z A T I O N  A L G O R I T H M  

The above regularization algorithm for an ODE system with a degenerate matrix is implemented in 
the computer program PIONER [9] to solve two- and three-dimensional problems of deformation of ideal 
elastoplastic bodies. We consider solutions of some test problems obtained using this program. 

3.1. Tension of  a Bar .  We consider a numerical solution of the problem formulated in Sec. 1. A 
bar with the geometrical parameters given in Fig. 3a is loaded by a tensile force P. The bar material is ideal 
elastoplastic with material constants E = 1 GPa, ~ = 0.3, and cr ~ = 10 MPa. 

The first solution was obtained with the use of the bar (one-dimensional) model. The bar was divided 
into 10 two-node elements. The constitutive relations of this model have the form (1.1). We were unable to 
solve the problem without modification (without replacing Et = 0 by E~ > 0) since the auxiliary problem 
(2.10) with the singular matrix K and nonzero right side has no solution. However, the regularized problem 
(where Et = 0 is replaced by E~ = 0.01E) was solved. The uniaxial stress-strain diagram was reproduced in 
the numerical solution with high accuracy (points in Fig. 3b). 

The second solution was obtained with the use of a two-dimensional model (plane stress) of the bar. 
The bar was divided into 10 four-node elements (Fig. 3a). To calculate the tangent stiffness matrix K,  we 
used constitutive relations of the form (2.3) and (2.4). If the calculations were exact, the matrix K would be 
singular. However, because of approximation and calculation errors, the matrix K in system (2.10) proves 
nonsingular (uncontrolled regularization of the problem). The matrix K t is nonsingutar with replacement of 
Et = 0 by E~ = 0.01E (controlled regularization). The uniaxial deformation curve in Fig. 3c was reproduced 
adequately for both the controlled and uncontrolled regularization of the problem. The following two problems 
were solved for the controlled regularization (Et = 0 was replaced by E~ = 0.01E). 
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3.2. " P u r e "  B e n d i n g  o f  a B e a m .  A beam is bent  by moment M.  Owing to the symmetry, half 
of the beam is considered (Fig. 4a). The beam material is assumed to be ideal elastoplastic (E  = 3000 GPa,  

v = 0.3, and c~ ~ = 1 GPa) .  Since in a geometrical linear formulation, the beazn axis is not deformed under  
the bending moment, numerical analysis was performed for a quarter of the beam.  A two-dimensional model 
(plane stress) is used and the beam is divided into eight-node elements (Fig. 4b). The  moment at the beam's  
end is modeled by a linear pressure distribution with a maximum value P0 = 75 MPa  (Fig. 4b), which is used 
to determine the vector R0 in (2.7). This pressure distribution models the pure  bending of the beam in an 
elastic formulation; however, in an elastoplastic formulation, pure bending is modeled with an error due to 
the nonlinear distribution of the longitudinal stress over the cross section of the  beam. 
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Kachanov [2] considered the problem in a three-dimensional formulation and obtained an analytical 
solution by the Saint Venant semiinverse method. Figure 4c shows the moment applied on the end of the 
beam M versus the normal deflection of the beam end w, where Mli m is the ultimate moment calculated in 
[2] to be 12.103 N.m. The solid curve refers to the analytical solution and the points refer to the equilibrium 
configurations obtained by numerical integration of the equations. The equilibrium configurations in which 
the plastic-deformation regions occur for the first time are indicated in Fig. 4c by the triangle and square for 
the analytical and numerical solutions, respectively. Good agreement between the solutions is observed. 

3.3. Transverse  Bend ing  of a B e a m .  We consider the problem of a beam loaded by a point force 
applied at its center (Fig. 5a). The beam material is elastoplastic (E = 20 GPa, ~/-- 0, and c~ ~ -- 400 MPa). 
An analytical solution of the problem is given in [2]. Finite-element modeling of a quarter of the beam 
(Fig. 5b) is similar to that considered in Sec. 3.2. Figure 5c shows the normal mid-span deflection as a 
function of the applied force. There is good agreement between the numerical and analytical solutions (the 
notation is the same as in Fig. 4c). According to the analytical solution [2], the ultimate value of the halved 

force is Plim = 5 kN. 

C O N C L U S I O N S  

An algorithm is proposed for the regularization of problems of deformation of ideal elastoplastic bodies 
in the ultimate states. This algorithm is a modification of the standard numerical algorithm (the external 
load is assumed to be specified) and consists of two stages. In the first stage, the intensity parameter of the 
external load is considered unknown and the arc length of the integral curve in the (U, A) space is taken to be 
the deformation parameter. In the second stage, the degenerate matrLx of the system of equations for an ideal 
elastoplastic material is replaced by a matrix that corresponds to a material with isotropic strain hardening. 
The error due to this replacement is eliminated by iterative refinement of the solution. Numerical experiments 
show that some problems can be solved without the second stage of regularization since calculations yield 
an almost singular rather than singular tangent stiffness matrix. However, the uncontrolled regularization 
can lead to an unreliable solution of the problem. Theretbre, it is recommended to employ the regularization 
algorithm proposed in the present paper. 
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